skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raj, A Mohan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorescence quenching of an excited guest encapsulated within a cationic host by a cationic molecule was examined on an anionic inorganic surface. Repulsion between the host and the quencher was overcome by adsorbing both an anionic surface. Dimethyl stilbene (DMS), octa amine (OAm216+), viologen derivatives (VD2+) and saponite are used as guest, cationic capsule, cationic electron acceptor and anionic inorganic surface, respectively. The fluorescence behavior of DMS within OAm216+ (denoted as DMS@OAm216+) was observed by steady-state and time-resolved fluorescence measurements. As a result of electron transfer the fluorescence of DMS@OAm216+ was quenched by VD2+ under the presence of saponite, while no quenching was observed in theabsence of saponite. Those results indicate that the dynamic electron transfer between DMS@OAm216+ and VD2+ which are electrostatically repulsive, can be observed in the (DMS@OAm216+)-VD2+-saponite triad supramolecular system where the two cationic systems are brought closer by the anionic clay sheet. 
    more » « less
  2. null (Ed.)
    Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans -azobenzene ( t -Az) and several alkyl-substituted t -Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t -Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t -Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels. 
    more » « less
  3. null (Ed.)
  4. ortho -Nitrobenzyl ( o NB) triggers have been extensively used to release various molecules of interest. However, the toxicity and reactivity of the spent chromophore, o -nitrosobenzaldehyde, remains an unaddressed difficulty. In this study we have applied the well-established supramolecular photochemical concepts to retain the spent trigger o -nitrosobenzaldehyde within the organic capsule after release of water-soluble acids and alcohols. The sequestering power of organic capsules for spent chromophores during photorelease from ortho -nitrobenzyl esters, ethers and alcohols is demonstrated with several examples. 
    more » « less